
INTEGRATED COMPONENT-BASED DATA ACQUISITION SYSTEMS
FOR AEROSPACE TEST FACILITIES

Richard W. Ross
NASA Langley Research Center

Hampton, VA 23681-2199

Abstract

The Multi-Instrument Integrated Data Acquisition
System (MIIDAS), developed by the NASA Langley
Research Center, uses commercial off the shelf (COTS)
products, integrated with custom software, to provide a
broad range of capabilities at a low cost throughout the
system’s entire life cycle. MIIDAS combines data
acquisition capabilities with online and post-test data
reduction computations. COTS products lower
purchase and maintenance costs by reducing the level
of effort required to meet system requirements. Object-
oriented methods are used to enhance modularity,
encourage reusability, and to promote adaptability,
reducing software development costs. Using only
COTS products and custom software supported on
multiple platforms reduces the cost of porting the
system to other platforms.

The post-test data reduction capabilities of MIIDAS
have been installed at four aerospace testing facilities at
NASA Langley Research Center. The systems installed
at these facilities provide a common user interface,
reducing the training time required for personnel that
work across multiple facilities.

The techniques employed by MIIDAS enable NASA to
build a system with a lower initial purchase price and
reduced sustaining maintenance costs. With MIIDAS,
NASA has built a highly flexible next generation data
acquisition and reduction system for aerospace test
facilities that meets customer expectations.

Introduction – Building Better Data Systems

Developing real-time data acquisition and reduction
systems is an inherently difficult and complex job.
Building a good system is even more difficult.1 So
what is a good data acquisition system? Most users
would associate a good system with one that possesses
these attributes: fully functional, flexible, easy to use,
reliable, expandable to meet future requirements, and,
of course, low cost. The NASA Langley Research
Center in Hampton, Virginia, U.S.A., has developed a
next generation data acquisition and reduction system

called MIIDAS (Multi-Instrument Integrated Data
Acquisition System) that meets these criteria.

MIIDAS provides integrated data acquisition and data
reduction support, eliminating the need for purchasing
or developing two separate systems that perform
distinct, but closely interrelated, functions. Integrating
the data acquisition and reduction systems allows the
same features to be used for both products through the
use of a common user interface. This integrated
approach ensures compatibility between these two
products and allows the user the flexibility to decide
what is to be performed in real-time versus post-test,
based on the operational requirements of the aerospace
test facility, not the limitations of the various systems.
For example, MIIDAS provides the capability of
generating several types of plots, reports, and export
files; the user has the flexibility to choose whether these
are generated in real-time, offline after the test is
completed, or both.

For future expandability, MIIDAS provides a generic
instrument framework that allows future data
acquisition hardware instruments to be easily added
without requiring significant modifications to existing
portions of the software. This framework provides
consistent, common interfaces (such as data file
formats, instrument configuration interfaces, and user
interfaces) and standardizes the overall architecture of
the system across all types of data acquisition hardware.

Standardization of the data acquisition and data
reduction software reduces the training effort required
by personnel that must support multiple test facilities.
Users find the software is easy to use because no
additional effort is required to learn a new product, and
all of the developers’ efforts can be devoted to
enhancing the usability of a single product, rather than
being diverted to support multiple products.

Software developers’ support efforts are further reduced
by the use of software components, or “building
blocks,” enabling systems with new capabilities to be
easily developed from existing functional components.
As a result, a significant cost savings can be realized.



Using commercial off the shelf (COTS) products
reduces both the initial development and the continuing
maintenance costs by purchasing, rather than
developing, software. The costs incurred by the
manufacturers of COTS software can be amortized over
their entire user base, not absorbed by a single user (or
limited number of users) as is required for custom-
developed software.

Designing MIIDAS to function on multiple platforms
greatly reduces the need to rewrite the software in the
future. As market fluctuations and public opinion
determine or influence what hardware and software
platforms are the systems of choice, the software can
easily adapt to these changes without extensive
software redesign or modification.

MIIDAS takes advantage of the object-oriented design
and programming capabilities offered by computer
programming languages such as C++ and Java to
isolate software from inadvertent “side effects” caused
by seemingly unrelated functions as can be observed in
traditional procedural programming languages such as
FORTRAN.2

The combination of these techniques enables MIIDAS
to achieve the design goals of being a low-cost data
acquisition system supporting future expansion
capabilities. Each of these techniques is described
below in further detail.

Integrated Architecture Ensures Compatibility

There are currently many commercially available off-
the shelf data acquisition systems that provide the
ability to acquire and log data and view these data in
near real-time. Frequently, these DAS software
products are designed around the specific
characteristics of a particular vendor’s line of data
acquisition hardware. These commercially available
DAS products provide very good support for selected
data acquisition hardware, but computations and data
analysis are left to the end user.

There are also many off-the-shelf computational and
data analysis tools to allow the users to perform these
operations. By combining a data acquisition system
from one supplier with a data reduction and analysis
system from another supplier, users can acquire, reduce,
and analyze test data, provided that these two systems
are compatible with each other.

Using two separate products, one for data acquisition
and another for computations and analysis, requires that
the user learn how to operate two independent systems.

The output of the DAS must be compatible with the
data reduction system, often requiring additional effort
to export data from the DAS into a format that can be
imported into the data reduction software. Frequently,
some capabilities may be present in one product, but
absent or limited in the other product. End users are
often frustrated when an operation can easily be
performed online during test execution, but not offline
during post-test processing (or vice versa).

One of the two primary design goals for the MIIDAS
software is to combine the capabilities of an online data
acquisition system with the offline computational and
analysis capabilities of a data reduction system.
MIIDAS integrates both the data acquisition and data
reduction functionality into a single system using a
common user interface and common file formats.
Combining these two capabilities into a single product
increases the flexibility of the users by allowing them to
perform complex data analysis operations during the
execution of a test, or to play back previously recorded
data to simulate the execution of a test.

Figure 1 depicts the MIIDAS architecture, which
consists of two major subsystems: the Real-Time
Subsystem and the Offline Subsystem. Each of these
subsystems consists of components, or building blocks.
The Acquisition Component consists of the data
acquisition software and a data server to collect the raw
data, convert it to engineering units (EUs), and record
the acquired data to a raw data file. The Computation
Component performs additional complex computations
on the acquired data, serves the data to display
workstations and external computer systems, and stores
the data in a relational database. The User Interface
retrieves the data from the server and from the database,
displays the data on the workstations, and manages user
input requests and transmits them to the server for
processing. All of these activities are supported by a
set of Core Libraries that allow the components to
communicate with each other.

The Offline Subsystem consists of a Playback Compo-
nent that reprocesses previously acquired data from the
raw data file. The data can be displayed as if they were
being acquired in real-time, or can be reprocessed using
different computations and corrections. The Legacy
Data Interface component provides backward-compati-
bility with raw data files recorded by other NASA
Langley data systems. The Offline Subsystem also uses
the Computation Component, User Interface, and Core
Libraries used by the Real-Time Subsystem. Providing
a common user interface, computations, and support
library that is shared between the online and offline
software increases the users’ flexibility for acquiring
and processing test data.



Instrument Framework Increases Expandability

As previously described, many data acquisition systems
are designed to support specific data acquisition
hardware. Such a design makes it difficult and
expensive to expand the capabilities of the DAS to
support other types of instruments, especially if the new
instruments are significantly different than the types of
devices currently supported.

There is great diversity among families of data acqui-
sition hardware. Some instruments are highly
sophisticated and can be programmed to automatically
perform engineering unit conversions and perform
several types of corrections and compensations. These
types of devices can be configured to specify
parameters for each channel, such as amplifier gain
settings, filter types and cutoff frequencies, and scan
rates. Some instruments can automatically perform
self-tests, initiate calibrations, and can be interrogated
to obtain card types and other parameters.

By contrast, other devices (especially older instru-
ments) are less configurable and support fewer features.
These types of devices may not support data buffering,
automatic calibrations, or setting channel parameters.
Frequently, one manufacturer will provide similar
hardware interfaces among all instruments within their
product line, but another manufacturer will require a
very different interface.

Clearly, the software that communicates with the
hardware needs to be different for each type of device
to support the capabilities and communications
protocols used by new hardware products. In a well-
designed system, the fundamental structure of the
software needs to be flexible enough to support these
radically different types of hardware, across multiple
vendors and with different levels of programmability.

However, if a data acquisition system was not designed
to be expandable to accommodate future types of
instruments, or to interface with hardware from
multiple vendors, then all the supporting software must
also be changed if these new instruments are to be
supported. Implementing these changes can be very
time-consuming and expensive.

MIIDAS currently supports hardware interfaces for
several data acquisition units manufactured by Neff
Instrument Corporation, including the Neff System 620
Series 500 Measurement and Control I/O System, Neff
System 620 Series 600 Amplifier/Multiplexer, and the
System 470 Data Acquisition System. MIIDAS also
supports Electronically Scanned Pressure (ESP)
measurement systems from Pressure Systems, Inc.
MIIDAS is designed to support the addition of future
instrument types by using a generic instrument
framework. This framework provides a hierarchical
structure that defines a generic “device,” which is
simply an instrument that can be connected to a com-
puter. Next, a device interface is specified, which

MIIDAS

Core
Libraries

Acqui-
sition

Compu-
tations

User
Interface

Legacy
Data

Interface

Playback

Real-Time Subsystem

Offline Subsystem

Core
Libraries

Core
Libraries

Acqui-
sition
Acqui-
sition

Compu-
tations

Compu-
tations

User
Interface

User
Interface

Legacy
Data

Interface

Legacy
Data

Interface

PlaybackPlayback

Real-Time Subsystem

Offline Subsystem

Figure 1. MIIDAS Integrated Architecture Ensures Compatibility and Increases Flexibility.



identifies the physical hardware interface to be used
(TCP/IP, IEEE-488, RS-232-C, etc.).

Each instrument is classified according to its type and
usage: controller unit, input unit, or output unit.
Controller units support communication between the
computer and instrument. Controller units are
configurable and programmable; these are the units that
control the operation configuration of the input and
output units.

Input units are used to acquire data from channels on
the instrument. Signals from transducers are digitized
and transmitted from the instrument to the computer.
Input units may be buffered to allow high data
acquisition rates without requiring constant interaction
with the host computer, or may be simple, unbuffered
devices that are directly scanned and controlled by the
computer.

Output units are similar to input units, except that
digitized data are transmitted from the host to the
instrument. These digitized data are converted to
analog voltages and are used for controlling devices
connected to the instrument.

The format of the data received from input units varies
from instrument to instrument, which requires that all
software that processes the received data support each
type of instrument. The supporting software that would
be affected includes all the internal data structures, the
format of the recorded data, all programs that process
the data in real-time, the post-test processing software
that reads the recorded data file, plus utility and testing
software used to interrogate and validate the integrity of
the recorded data files. This approach is not practical,
since it requires extensive changes whenever a new data
acquisition unit is added to the DAS.

One solution is to convert the data from each manufac-
turer’s format into a new format that is used internally
by the DAS for all processing. Earlier versions of the
MIIDAS software used this approach, but it had very
high processing overhead due to the amount of copying
and reformatting of the data that was required. As a
result, this approach is not practical at high acquisition
rates. What was needed was a solution that allowed the
data to be interpreted and processed in its native format,
without recopying or reformatting.

Despite the variations in protocols, MIIDAS accommo-
dates these disparate data formats by adding a generic
header to the acquired data. The header allows the data
to be treated as a matrix, and the header specifies the
number of rows and columns in the matrix, the data
format (such as floating point, signed integer, unsigned

integer, or text), and offsets that define the beginning of
the matrix. The header also contains the information
needed to convert the raw data values to millivolts by
defining the full range of the instrument. Using this
header, all of the supporting software can process data
from various sources, in diverse formats, in a generic
and consistent manner.

Standardization Promotes Ease of Use

As of early 2001, there were three major data reduction
systems in use at the NASA Langley Research Center,
and each of these systems had several variants used at
different aerospace facilities. Langley users were
frequently frustrated by the lack of standardization and
its associated problems. Different programs produced
varying results, and users didn’t know which was the
“right” answer. Maintenance costs were extremely
high, since many different systems and versions needed
to be maintained.

Worst of all, data reduction system users that were
transferred to another aerospace facility, either
temporarily or permanently, needed to be retrained in
the operation of the new systems. These users had
already invested a significant effort to become familiar
with the operation of one system, and then had to learn
another system at a different facility. As a result, the
users often expressed feelings of frustration and being
overworked.

By contrast, the data acquisition systems were much
more standardized. Only a single product existed at the
major LaRC aerospace test facilities, although there
was still a different version of the DAS software in use
at each of the facilities.3 A similar solution was needed
for the data reduction systems that would replace the
existing three disparate data reduction systems with a
single, standardized system common to all facilities.
By increasing the degree of standardization, the ease of
use is elevated due to the elimination of the need for
retraining.

The data reduction capabilities of MIIDAS were
developed to overcome these difficulties by employing
three different strategies. The first strategy, using an
integrated architecture to provide a common interface
between the data acquisition and data reduction
software, has already been described above. By
integrating the data acquisition and the data reduction
systems, the users can operate more efficiently due to
the common interface between the two products.

The second strategy employed is to replace the different
data reduction products currently in use at the various
Langley facilities with a single, standardized system.



By reducing the number of diverse data reduction
systems, maintenance costs have been significantly
lowered, and the maintenance personnel can concen-
trate on a single product, instead of the workforce being
diluted by supporting several products concurrently.

The third strategy is to develop a single, standardized
version of the software that meets the needs of all users
of the system. This strategy is an extension of the
previous strategy: focus the efforts into developing and
maintaining a single version. By maintaining only one
version of a single product, the support staff can
provide a higher level of service, including both greater
in-depth knowledge and reduced response times, due to
the increased number of available and knowledgeable
personnel.

Components Lower Software Complexity

Data acquisition and reduction systems are inherently
complex, due to the need for extensive functionality
and the high degree of reliability that is required.
Generally, the complexity of a software system
increases rapidly with the degree of functionality.
Since development and maintenance costs are directly
related to the complexity of the system, reducing
complexity is an effective method for lowering costs.4

While the growth in complexity due to the increase of
functionality is unavoidable, it can be mitigated through
the use of software components. A software
component is a collection of software modules that
perform a specific set of functions and have a well-
defined interface. In this sense, a software component
is comparable to an integrated circuit chip: it performs a
particular function, or set of functions, and has a clearly
defined interface defined by its pin-out specifications.

Similarly, a software component can be defined by
identifying the requirements that a component will
fulfill, and by delineating the communication protocol
between the component and other portions of the
software system. To effectively lower the overall
complexity of a software system, the components must
be capable of enforcing the interface requirements by
disallowing any access to data or functions other than
through the defined interface.

MIIDAS uses several software components that have
already been previously described. Each of these
components consists of an interface manager, or server,
that controls the communication between the
component and its clients. In some cases, MIIDAS
uses multiple interface managers to control access to
data by different types of clients.

One example of the use of multiple interfaces is with
the Computation Component, which provides one set of
services to the Display Component, an integral part of
the MIIDAS system. The Computation Component
also provides another interface to external computer
systems. This interface supplies a much more limited
set of capabilities to these external systems to prevent
inadvertent and inappropriate actions from being
initiated by these systems.

Off the Shelf Products Decrease Cost

In addition to reducing the complexity of the software
as an effective method for lowering costs, the volume
of the software can be reduced by purchasing third-
party, commercial off the shelf (COTS) software
products.5 COTS products usually provide function-
ality that equals or exceeds that of custom-developed
software, since a larger staff of skilled developers is
available. Purchasing COTS software is usually less
expensive than maintaining custom-developed software
because the development and maintenance expenses for
COTS products can be shared among users of these
products.

MIIDAS incorporates several COTS products as part of
the standard system, and provides support for other
optional COTS products. Microsoft Office Profes-
sional includes two products that MIIDAS uses
extensively: Microsoft Access and Microsoft Excel.
Access is a low-cost relational database that supports
database standards such as Structured Query Language
(SQL) and Open Data Base Connectivity (ODBC)
protocols. MIIDAS currently uses Access to provide
database services, although any SQL- and ODBC-
compliant database could be substituted. The database
is used to store reduced test data for later retrieval and
presentation. By using a relational database, MIIDAS
can perform queries based on user-specified conditions,
generate reports, and export data to other programs for
further analysis.

One of these analysis programs that MIIDAS uses is
Microsoft Excel. Access can directly transfer data from
a database to an Excel spreadsheet without the need to
export data from one program and import data into the
other. Once the data are in the spreadsheet, the user can
perform additional computations on the data, display
the data using plots or reports, or compare the data to
historical or theoretical data.

MIIDAS also uses MATLAB, by The MathWorks,
Inc., as an optional tool for more complex analysis and
plotting capabilities. MATLAB is a high-performance



language for technical computing. It provides an
extensive library of advanced mathematical functions
and can be operated interactively or through a scripting
language. The execution of these scripts can be
performed under program control as well, allowing the
DAS software to transmit current data to a MATLAB
script and retrieve the results up to ten times per
second. Used in this manner, MATLAB provides the
capability for a user to develop custom software, using
a high-level scripting language that can be tightly inte-
grated with other real-time and offline computations.

MATLAB also provides the capability to plot data, as
well as the ability to develop user interfaces. MIIDAS
uses these features to present acquired data using two-
dimensional plots, with user-configurable parameters
such as plot scales and colors. MATLAB can also
generate and manipulate three-dimensional graphical
representations of objects, allowing test articles to be
depicted in 3-D based on data acquired by MIIDAS.
Figure 2 shows a user-defined plot generated by the
MATLAB software.

Platform-Independence Promotes Expandability

One of the design goals of MIIDAS was to provide full
functionality with a low-cost data acquisition system.
To keep the cost of these systems low, MIIDAS was
originally designed to run on Intel Pentium-based
(x86) personal computers (PCs) running Windows

2000. However, some applications require a system
with the greater horsepower. NASA Langley currently
has many data acquisition systems using Compaq
(formerly Digital Equipment Corporation) Alpha-
Servers running Tru64 UNIX. Although these
systems are much more expensive, they offer high
levels of performance and have already been purchased.
Current Alpha users would like to be able to upgrade
their data acquisition software without the need to
replace their existing hardware.

MIIDAS is currently being redesigned to provide
support for multiple platforms, including Windows
2000/NT on x86-based hardware as well as several
variants of UNIX, including Tru64, Linux, and Solaris.
To provide this capability, MIIDAS uses COTS
products that are readily available on all of these
platforms. For software developed in-house, all
MIIDAS software is either designed to be platform-
independent, using only industry-standard program-

Figure 2. Commercial Products Increase Functionality and Lower Costs.



ming language capabilities and constructs, or is
designed to isolate any platform-specific code from the
platform-independent software.

Object-Oriented Design Reduces Maintenance

While the design and development of new software
projects is expensive, the maintenance of software
products is even more costly. Software maintenance
typically consumes about 60% or more of the total
expenditure over the total life cycle of a software
system, while only 40% of the total cost is consumed
by the initial phases of a software project.

These initial phases include the definition of the
requirements, top-level design, detailed design,
implementation, unit testing, system testing, integrated
testing, installation, acceptance testing, user training,
and documentation. These costs are incurred up front
and are highly visible, yet on some projects the initial
design and development costs may represent as little as
20% of the total cost of developing a data acquisition
system.6 The remaining 80% is spread out over time
and is often unanticipated, yet the maintenance costs
can far exceed the original development costs,
especially for products with long life-cycles.

MIIDAS, as previously described, is designed to allow
the software to be easily adaptable to both new types of
data acquisition instruments and to new computer
hardware and operating system software platforms.
Thus, MIIDAS is expected to exhibit a long software
life cycle, and the design of MIIDAS is based on this
assumption and on its long-term goals. Frequently,
software products are designed to minimize develop-
ment costs, yet both developers and customers discover
later that maintenance costs vastly outrun the initial
development costs.

Even users who are not familiar with software
development and its associated life-cycle process can
easily relate to the same relationship between initial
cost and maintenance costs with commercial products.
Many top-end commercial software products charge an
annual maintenance fee of approximately 20% of the
original purchase price to provide telephone support,
patches to solve immediate problems, and full product
releases with new capabilities. Many “low-cost” ink-jet
printers sell for low purchase prices, but replacement
ink cartridges are very expensive and must be replaced
frequently. As a result, the cost of the ink for a heavily
used printer can easily exceed the initial cost of the
printer, even in the first year of ownership!

Software maintenance efforts, and their associated
costs, can be classified as corrective (fixing software
bugs), perfective (adding new capabilities to software),
adaptive (changing fully functional software to work in
a new environment), or emergency (modifying software
to allow the continued operation of the system).7

Modern programming languages such as C++ and Java
use object-oriented technology to reduce these
maintenance efforts and their associated costs.

MIIDAS uses C++ to provide the core functionality of
the data acquisition and reduction systems, and uses
Java applications (stand-alone, not web browser hosted)
for the user interface. Java is used to provide a
platform-independence environment for user interface
development, resulting in lower development costs.

Both Java and C++ support encapsulation, which
isolates portions of the code, including both data and
functions, from other parts of the system that do not
need to interact with these functions. Encapsulation
allows portions of a complex system to be developed
without concerns for the interaction with other portions
of the system.8 Developing a system using encap-
sulation may increase the initial development costs by a
small amount, but result in greatly reduced maintenance
costs, depending on the expected lifetime of the
product.

MIIDAS also utilizes other object-oriented techniques
such as inheritance and polymorphism. Inheritance
allows one class and its objects to acquire, and even
change, some or all of the properties of the original
class without duplicating the source code. This
technique minimizes the development effort by
allowing useful code to be reused, rather than copied.
Copying code, then making some slight variation to that
code, means that there are now two versions that must
be maintained; if a bug is found in the logic of the
original code, it must now be fixed in two places!
Using inheritance, the correction is made once, and the
change is automatically propagated to the inheriting
classes without additional code modifications. Poly-
morphism, meaning “many forms,” enables software
functions with the same name to perform different
operations, depending on how the software is used.

Future Enhancements Will Expand Capabilities

MIIDAS, as it exists today, provides many immediate
benefits: decreased complexity, increased standardi-
zation, greater flexibility, lower life-cycle costs, and
greater expandability. Planned future enhancements
promise to build on these strengths while providing
greater functionality.



One major enhancement is the addition of an algorithm
to automatically assess the quality of acquired data
using statistical methods. This planned approach would
analyze and evaluate the data using a combination of
data validation criteria specified by the user and
preprogrammed constraints determined by the limita-
tions and characteristics of the data acquisition hard-
ware and transducers.

Other enhancements include upgrading to higher-
performance databases, such as Oracle or Informix,
and optimizing the user interface software to maximize
ease of use.

Summary – Simpler is Better

Building a complex data acquisition system is a
challenging task, but developing a simpler system takes
even more effort. At first, this statement may seem
paradoxical, but when the full life-cycle costs are
considered, it becomes apparent that simplicity, and
hence low total cost of ownership, doesn’t just happen
by accident. Building a high quality system that is
easily maintained at a low cost requires extensive up-
front planning and design.

MIIDAS is based on the assumption that simpler is
better (meaning greater functionality at a lower cost).
MIIDAS consists of a data acquisition system inte-
grated with a data reduction system to provide
commonality and increase the flexibility of the total
system. The system is expandable by providing a
generic instrument framework that can be easily
customized to support the addition of new data
acquisition hardware.

By developing a system that can be applied to a wide
range of testing needs, users are not required to learn
the operation of new software programs when they are
temporarily or permanently assigned to other facilities.
The result is of benefit to the user, since the user does
not need to learn another software product, and the cost
to the organization is reduced.

The use of software components reduces the com-
plexity of the system, resulting in lower initial
development and purchase costs as well as reduced
continuing maintenance costs. Commercial off the
shelf products further lower these costs by reducing the
total volume of custom software development required.

Developing software that is not targeted to a specific
hardware or operating system platform reduces long-
term adaptive maintenance costs by enabling the useful

life of the software product to exceed the hardware
lifespan. Object-oriented design and programming
techniques further reduce the maintenance costs by
maximizing reuse of the software and isolating
programs and data.

Expanding the future capabilities of MIIDAS will allow
even greater enhancements, such as the ability to
support high-performance databases, to expand support
to other hardware, and to assess data quality in real-
time. These future capabilities can be easily
incorporated into the existing software because of use
of software components and the generic instrument
framework.

Because of the expandability that comes from platform
independence and the generic instrument framework,
MIIDAS has broad applicability to a wide variety of
applications. MIIDAS promotes flexibility in the
workforce by enabling personnel to perform a wide
variety of operations with a single, integrated product.
This product can accommodate current as well as future
needs for a test facility, reducing the maintenance and
upgrade costs that would otherwise be required.

MIIDAS was designed to minimize the total life-cycle
cost using the techniques described. This effort
resulted in a program that is less complex, promotes
reusability of software components, and is easily
maintainable. In other words, building a simpler data
acquisition system results in a better system overall.

References

1). Douglass, B. P., 2000,Real-Time UML:
Developing Efficient Objects for Embedded
Systems, Addison-Wesley, pp. 2-12.

2). Glass, R., L., 1992,Building Quality Software,
Prentice-Hall, pp. 311-312.

3). Batts, F. E., 1998, “The Evolution of Wind
Tunnel Data Acquisition Systems at NASA
Langley Research Center,”Proceedings of the
44th International Instrumentation Symposium,
Reno, NV, pp. 1-6.

4). Weinberg, G., 1992,Quality Software Man-
agement: Systems Thinking, Dorsett House,
pp. 135-139.

5). Boehm, B. W., 1981,Software Engineering
Economics, Prentice-Hall, pp. 311-312.



6). Martin, J., McClure, C., 1983,Software
Maintenance: The Problems and Its Solutions,
Prentice-Hall, pp. 84-87.

7). Software Engineering Standards Committee of
the IEEE Computer Society, 1998, “IEEE
Standard for Software Maintenance, IEEE Std
1219-1998,” Institute of Electrical and
Electronics Engineers, Inc., p. 5.

8). Lippman, S. B., Lajoie, J., 1998,C++ Primer,
Addison-Wesley, p. 33.


